

INTELLIGENT SYSTEMS (CSE-303-F)

Section C

Fuzzy Reasoning

Contents

- Bivalent and Multivalent Logics
- Linguistic Variables
- Fuzzy Sets
- Membership Functions
- Fuzzy Set Operators
- Hedges

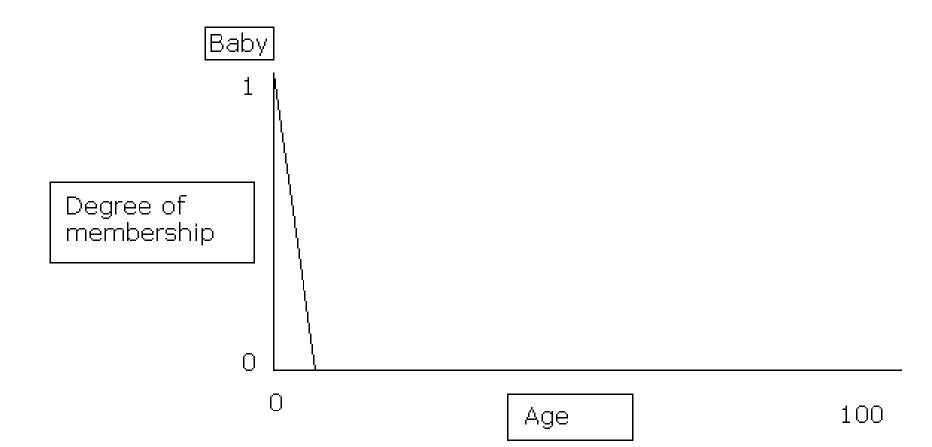
Contents

- Fuzzy Logic
- Fuzzy Rules
- Fuzzy Inference
- Fuzzy Expert Systems
- Neuro-Fuzzy Systems

Bivalent and Multivalent Logics

- Bivalent (Aristotelian) logic uses two logical values true and false.
- Multivalent logics use many logical values

 often in a range of real numbers from 0 to 1.
- Important to note the difference between multivalent logic and probability – P(A) = 0.5 means that A may be true or may be false – a logical value of 0.5 means both true and false at the same time.


Linguistic Variables

- Variables used in fuzzy systems to express qualities such as height, which can take values such as "tall", "short" or "very tall".
- These values define subsets of the universe of discourse.

Fuzzy Sets

- A crisp set is a set for which each value either is or is not contained in the set.
- For a fuzzy set, every value has a membership value, and so is a member to some extent.
- The membership value defines the extent to which a variable is a member of a fuzzy set.
- The membership value is from 0 (not at all a member of the set) to 1.

Membership Functions

Crisp Set Operators

•Not A – the complement of A, which contains the elements which are not contained in A.

•A \cap B – the intersection of A and B, which contains those elements which are contained in both A and B.

•A \cup B – the union of A and B which contains all the elements of A and all the elements of B.

•Fuzzy sets use the same operators, but the operators have different meanings.

Fuzzy Set Operators

 Fuzzy set operators can be defined by their membership functions

$$\begin{split} & \blacksquare M_{\neg A}(x) = 1 - M_A(x) \\ & \blacksquare M_{A \cap B}(x) = MIN(M_A(x), M_B(x)) \\ & \blacksquare M_{A \cup B}(x) = MAX(M_A(x), M_B(x)) \end{split}$$

 We can also define containment (subset operator):

 $\blacksquare B \subset A \text{ iff } \forall x (M_B (x) \leq M_A (x))$

Hedges

- A hedge is a qualifier such as "very", "quite", "somewhat" or "extremely".
- When a hedge is applied to a fuzzy set it creates a new fuzzy set.
- Mathematic functions are usually used to define the effect of a hedge.
- For example, "Very" might be defined as:
 ■M_{VA} (x) = (M_A (x))²

Fuzzy Logic (1)

- A nonmonotonic logical system that applies to fuzzy variables.
- We use connectives defined as:
 - $\blacksquare A \lor B \equiv MAX (A, B)$

$$\blacksquare A \land B \equiv MIN (A, B)$$

$$\blacksquare \neg A \equiv 1 - A$$

• We can also define truth tables:

Α	В	$\mathbf{A} \lor \mathbf{B}$
0	0	0
0	0.5	0.5
0	1	1
0.5	0	0.5
0.5	0.5	0.5
0.5	1	1
1	0	1
1	0.5	1
1	1	1

Fuzzy Inference (1)

• Inference is harder to manage.

 $0.5 \rightarrow 0 = 0$

	Α	В	$A \rightarrow B$
 Since: 	0	0	1
$A \rightarrow B \equiv \neg A \lor B$	0	0.5	1
 Hence, we might define fuzzy 		1	1
inference as:	0.5	0	0.5
	0.5	0.5	0.5
$A \rightarrow B \equiv MAX ((1 - A), B)$	0.5	1	1
 This gives the unintuitive truth 		0	0
table shown on the right.	1	0.5	0.5
• This gives us $0.5 \rightarrow 0 = 0.5$, where we would expect		1	1

Fuzzy Inference (2)

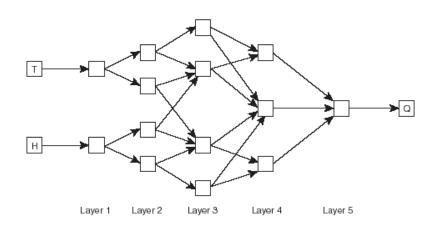
 An alternative is Gödel B 0 0 implication, which is defined 0 0.5 as: 0 0.5 0 0 $A \rightarrow B \equiv (A \leq B) \vee B$ 0.5 0.5 0.5 • This gives a more intuitive 1 0 0 0.5 0.5 1 truth table.

Fuzzy Inference (3)

- Mamdani inference derives a single crisp value by applying fuzzy rules to a set of crisp input values.
- Step 1: Fuzzify the inputs.
- Step 2: Apply the inputs to the antecedents of the fuzzy rules to obtain a set of fuzzy outputs.
- Step 3: Convert the fuzzy outputs to a single crisp value using defuzzification.

Fuzzy Rules

- A fuzzy rule takes the following form:
 IF A op x then B = y
- op is an operator such as >, < or =.
- For example:


IF temperature > 50 then fan speed = fast IF height = tall then trouser length = long IF study time = short then grades = poor

Fuzzy Expert Systems

- A fuzzy expert system is built by creating a set of fuzzy rules, and applying fuzzy inference.
- In many ways this is more appropriate than standard expert systems since expert knowledge is not usually black and white but has elements of grey.
- The first stage in building a fuzzy expert system is choosing suitable linguistic variables.
- Rules are then generated based on the expert's knowledge, using the linguistic variables.

Neuro-Fuzzy Systems

- A fuzzy neural network is usually a feedforward network with five layers:
- 1. Input layer receives crisp inputs
- 2. Fuzzy input membership functions
- 3. Fuzzy rules
- 4. Fuzzy output membership functions
- 5. Output layer outputs crisp values

